LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS
 FOURTH SEMESTER - APRIL 2010
 ST 4811 / 4807 - ADVANCED OPERATIONS RESEARCH

Date \& Time: 20/04/2010 / 9:00-12:00
Dept. No.
Max. : 100 Marks

PART-A
Answer all the questions.
$10 \times 2=20$ marks

1. State general linear programming problem.
2. Give an example for an LPP to have an unbounded solution.
3. Find the dual for the following primal :

Maximize $z=10 x_{1}-4 x_{2}+7 x_{3}$
Subject to
$2 x_{1}+5 x_{2}+8 x_{3} \leq 12$
$6 x_{1}-4 x_{2}+5 x_{3} \leq 34$
$3 x_{1}+6 x_{2}-8 x_{3} \leq 55$
$x_{1} \geq 0, x_{2} \geq 0$ and $x_{3} \geq 0$.
4. Write a note on goal programming.
5. What is the need for inventory control ?
6. Define setup and penalty costs.
7. Write the general behavior of customers in a queue.
8. Write the characteristics of a queuing model.
9. State quadratic programming problem.
10.Write the significance of stochastic programming.

PART-B
Answer any five questions $\quad 5 \times 8=40$ marks
11. Use the graphical method to solve the following LPP:

Minimize $z=-x_{1}+2 x_{2}$
Subject to
$-x_{1}+3 x_{2} \leq 10, x_{1}+x_{2} \leq 6$ and $x_{1}-x_{2} \leq 2$
$x_{1} \geq 0$ and $x_{2} \geq 0$.
12. Discuss the dual simplex algorithm.
13. Explain the multiple item static model.
14. Explain the elements of a queuing system.
15. At a certain petrol pump, customers arrive in a Poisson process with an average time of 5 minutes between arrivals. The time interval between servers at the petrol pump follows an exponential distribution and the mean time taken to service a unit is 2 minutes.
Find
(i) Average number of customers in the system.
(ii) Expected average queue length
(iii) Average time a customer has to wait in the queue
(iv) Average time a customer has to spend in the system.
16. Derive the sufficient conditions for a general NLPP with $m(<n)$ constraints.
17. Explain the branch and bound algorithm for solving an IPP.
18. Use dynamic programming to solve the following problem:

Minimize $z=y_{1}{ }^{2}+y_{2}{ }^{2}+y_{3}{ }^{2}$
Subject to
$Y_{1}+y_{2}+y_{3} \geq 15$ and y_{1}, y_{2} and y_{3} are non-negative.

PART-C
 Answer any two questions

19. Solve the following integer linear programming problem using the cutting plane algorithm:

Maximize $\mathrm{z}=3 \mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to
$-\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 4,4 \mathrm{x}_{2}-\mathrm{x}_{3} \leq 2$ and $\mathrm{x}_{1}-3 \mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 3$
x_{1}, x_{2} and x_{3} all are non -negative integers.
20. Write in detail a continuous review inventory model when the demand is stochastic.
21. Derive the characteristics of (M/M/c): (GD/N/ ∞) queuing model.
22. Use Wolfe's method to solve the following quadratic programming problem:

Maximize $\mathrm{z}=6 \mathrm{x}_{1}+3 \mathrm{x}_{2}-4 \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1}{ }^{2}-3 \mathrm{x}_{2}{ }^{2}$
Subject to
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 1$ and $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 4$
x_{1} and x_{2} are non-negative.

